

TEST PERFORMANCE MEASUREMENTS

Release Date: December 20, 2000

Contract Number: GS-35F-4919H
Order Number: T0000AJ3739

CLIN #008-1

Prepared for:

U. S. DEPARTMENT OF EDUCATION
OFFICE OF STUDENT FINANCIAL ASSISTANCE (SFA)

400 Maryland Avenue, SW
Washington, DC 20202

Prepared by:

CTGi

CTGi
Suite 250

10461 White Granite Drive
Oakton, VA 22124

This page left intentionally left blank

ii

This draft (or working paper) is not an official CTGi report. The views or conclusions expressed
have not been through the complete review process and may be expanded, modified, or
withdrawn at any time.

CTGi

FOREWORD

CTG, Incorporated (CTGi) would like to thank the following personnel whose dedication and
involvement made the development and completion of this document possible.

Kelly Conboy

Candace Jones

Frank Majewski

Annette Mazie

Paul Stocks

 Sandra Stocks
 Director Of Operations,
 Washington Metropolitan Area
 CTGi

i

CTGi

This page intentionally left blank

ii

CTGi

EXECUTIVE SUMMARY

This document was prepared for the United States (U. S.) Department of Education, Office of
Student Financial Assistance (SFA) by CTG, Incorporated (CTGi) for the purpose of developing
a standardized procedure to provide Project Managers (PM) with the software information
necessary to make informed decisions that impact project cost, schedule, and technical
objectives.

This document, along with those listed below, will be integrated into and become the final
deliverable of this contract, U. S. Department of Education, SFA, System Integration and Testing
(SI&T) Process Handbook. The U. S. Department of Education, SFA, SI&T Process Handbook
will then become integrated into the overall U. S. Department of Education, SFA Modernization
Technology Handbook. The remaining documents that will comprise the SI&T Process
Handbook are:

• System Integration and Testing Standards

• Procedures and Templates for Test Creation

• Procedures and Templates for Test Execution, Test Evaluation, and Error Correction

• Procedures and Templates for System Configuration Management (CM) and Quality
Assurance (QA)

• Procedures For Using Testing Tool

Each of the above listed procedures, templates, and guide were prepared for delivery as a
separate document.

All SI&T guidelines and procedures are focused on supporting systems or projects used in the
development and execution of a comprehensive integration and testing program. To this end,
this document contains information on understanding issues associated with procedures relating
to system test management, system test planning roles, system testing organization
responsibilities, collection of information related to progress of the system test phases, and
required system testing practices.

iii

CTGi

This page intentionally left blank

iv

CTGi

Table of Contents
Section Page

1. INTRODUCTION 1
1.1 Background..1
1.2 Objective ..1
1.3 Applicability ..1
1.4 Document Organization ...2

2. PROPOSED SYSTEM TEST ORGANIZATION OVERVIEW 1

2.1 Executive Manager ..2
2.2 Project Manager ...2
2.3 Quality Assurance Group...2
2.4 Configuration Management Group ..3
2.5 System Development Group..4
2.6 Test Manager ...4

2.6.1 Test Engineer ... 4

3. TEST PERFORMANCE MEASUREMENTS OVERVIEW 1
3.1 Measurement Implementation Roles ...1
3.2 Communication..2

4. TAILORING TEST PERFORMANCE MEASUREMENTS 1
4.1 Test Performance Measurements Tailoring Overview ..1
4.2 Identify and Prioritize Project Issues ...3

4.2.1 Issues.. 3
4.2.2 Risk Management .. 4

4.3 Select and Specify Project Measures ...5
4.3.1 Select Measurement Categories... 6
4.3.2 Select The Applicable Measures.. 9
4.3.3 Specify The Data Requirements .. 10
4.3.4 Selecting and Specifying Measures For Existing Projects 11

4.4 Integrate Measures Into The Software Development Process ...12
4.4.2 Characterize Software Environment .. 12
4.4.3 Identify Measurement Opportunities ... 14
4.4.4 Specify Measurement Implementation Requirements ... 15

4.5 Project Measurement Plan ...17
4.6 Organizational Measurement Plan...19

v

CTGi

Table of Contents (Cont'd)
Section Page

5. EFFECTIVE USE OF MEASUREMENT DATA 1
5.1 Tracking Test Effort Effectiveness ..1

5.1.1 Traceability .. 1
5.1.2 Measuring Test Effort Relative To Software and Testing Requirements.................. 2
5.1.3 Measuring the Effectiveness of SPR Identification and Resolution.......................... 5

5.2 System Problem Reports By State of System Problem Report Life Cycle............................5
5.2.1 Duration Between States of System Problem Report Life Cycle 7
5.2.2 Abnormal Progression ... 8

GLOSSARY Gls-1

BIBLIOGRAPHY Bbl-1

APPENDIX A MEASUREMENT TAILORING PLAN A-1

vi

CTGi

LIST OF EXHIBITS

Figure 2.1 Proposed System Test Organization..1

Figure 4.1 Measurement Tailoring Process ..2

Figure 4.2 Identify and Prioritize Project Issues...3

Figure 4.3 Measurement Selection and Specification...6

Table 4.1 Measurement Categories and Related Questions..8

Figure 4.4 Integrate Measurement Into the Software Development Process................................12

Table 4.2 Typical Sources of Data..15

Table 4.3 Sample Outline for Project Measurement Plan...19

Table 5.1 Sample Measurement of SI&T Production, Planned Versus Actual3

Figure 5.1 Software Requirements Testing, Planned Versus Actual..4

Figure 5.2 System Problem Report Status by States...6

Figure 5.3 Total Versus Duplicate System Problem Reports ...7

Figure 5.4 System Problem Reports Progression Times ..8

Figure 5.5 System Problem Report Abnormal Progression..9

Table A.1 Issues and Priorities .. A-4

Table A.2 Measure Mapping ... A-5

Table A.3 Specification For Lines of Code ... A-7

vii

CTGi

This page left intentionally left blank

viii

CTGi

LIST OF ACRONYMS

CASE Computer Aided Software Engineering
CM Configuration Management
CMO Configuration Management Office
COTS Commercial Off the Shelf
CTGi CTG, Incorporated
DCR Document Change Request
CSCI Computer Software Configuration Item
GUI Graphic User Interface
HWCI Hardware Configuration Item
IDE Interactive Development Environment
IPT Integrated Product Team
IRS Interface Requirements Specification
LOC Lines of Code
PM Project Manager
POC Point of Contact
QA Quality Assurance
QAO Quality Assurance Office
QC Quality Control
SD System Development
SDF Software Development File
SFA Office of Student Financial Assistance
SI&T System Integration and Testing
SPR System Problem Report
SQT System Qualification Test
SRD Software Requirements Document
SSS System or Subsystem Specifications
STD System Test Description
STO System Test Organization
STP System Test Plan

ix

CTGi

LIST OF ACRONYMS

STR System Test Report
SU Software Unit
TM Test Manager
TPM Test Performance Measurements
TRR Test Readiness Review
WBS Work Breakdown Structure

x

INTRODUCTION

Background
The United States (U.S.) Department of Education, Office of Student Financial Assistance (SFA)
organization, contracted CTG, Incorporated (CTGi), in August 2000, to develop standardized
System Integration and Test (SI&T) procedures. These procedures will be used for guidance,
planning, and implementation involving current and future U. S. Department of Education
enterprise information technology systems projects.

Objective
This document describes the procedures, activities, and tasks necessary to ensure the U. S.
Department of Education, SFA, a consistent approach for measuring and defining system
integrity, reliability, efficiency, and functionality to ensure successful information technology
system integration and testing tasks and activities.

During the SI&T process, the focus is on preparing the system for delivery to the customer. This
usually means that the focus is on evaluating system quality. SI&T is often one of the shortest
and most intensive activities. Consequently, the Test Performance Measurements (TPM) process
must focus on providing rapid data collection, analysis, and feedback to project management so
that effective decisions can be made in a timely manner. On many projects, this results in
increased analysis of documentation and various reports. A weekly reporting interval for System
Problem Reports (SPR) is often used during the SI&T phases. In some cases, daily test progress
and SPRs are provided.

The determination of the reporting interval depends on many factors, but there is usually an
increase in measurement activity during SI&T process. Effective TPM gives an accurate and
comprehensive assessment of testing activities, minimizes and standardizes the burden of data
collection, and is accepted and used to improve SI&T process performance.

Reference to subjects, actions, and consequences made in this document, outside of the scope of
the SI&T process, are examples of how the TPM process and associated information can impact
other aspects of system life cycle engineering and development.

Applicability
When the SI&T process is performed by either the U. S. Department of Education, SFA, staff
and/or contractors, this document applies, unless specifically excluded, in the program/project
plan, contract, etc. This document is used for the creation of guidelines and procedures for the
planning, preparation, execution, analysis, and evaluation, of all types of U. S. Department of
Education, SFA, information technology project integration and testing.

1

Document Organization

This document contains five narrative sections, a Glossary, a Bibliography, and one appendix.
Section 1, Introduction, provides brief background information and states the guiding objective
and applicability for the document. Section 2, Proposed System Test Organization Overview,
defines a proposed System Test Organization (STO) that can be used during the SFA SI&T
process. Section 3, Test Performance Measurements Overview, is an overview of the TPM
process and defines goals and process participant roles. Section 4, Tailoring Test Performance
Measurements, establishes the guidelines necessary to identify measurement requirements to
address specific project issues. Section 5, Effective Use of Measurement Data, presents an
example of information gathering for the TPM process, with analysis and utilization during the
SI&T process. Appendix A, Measurement Tailoring Plan, presents an example of how a
measurement tailoring plan is created.

2

PROPOSED SYSTEM TEST ORGANIZATION OVERVIEW

The adaptation of a system testing discipline for the production of software-intensive systems
requires more than just an understanding of the technical issues. Developing a testing capability
starts with management establishing system test policies that define software testing. An
additional concern of management is coordinating software test activities to support the needs
and priorities of the process, satisfy the customer, and achieve the overall objectives of testing.
To that end, responsibility for testing activities must be established. The following paragraphs
discuss a proposed STO structure. Figure 2.1 presents this proposed organization.

Error! Not a valid link.

Figure 2.1 Proposed System Test Organization

The STO structure outlined in this section is based on the implementation of developed,
standardized procedures for conducting the SI&T process. There must be documented processes
established, which provides members of the STO with information for interpretation and
execution of SI&T process standards. Prescribed practices and procedures should encompass
administrative, analysis, planning, review, development, integration, testing, documentation,
CM, and QA. A well-organized STO assists in ensuring that the following requirements are met:

• Test planning, design, integration, execution, and evaluation responsibilities are

explicitly assigned.

• Test objectives and phases of tests to be conducted are documented in a System Test

Plan (STP).

• Test case(s) and test case procedure(s) are developed for all formal testing phases and

documented in a System Test Description (STD).

• Test resources and artifacts are under CM control.

• Testing activities and documentation are reviewed and evaluated by QA.

The development of test policies and standard test processes are performed or coordinated by
designated personnel. Coordination of the testing process ensures that activities are performed,
documented, reviewed, and approved in accordance with approved test policies and standards
throughout the testing life cycle.

1

Executive Manager

The executive manager is generally an organizational or enterprise manager responsible for
multiple projects. This manager defines high-level performance and business objectives and
ensures that individual projects support the overall organizational strategy.

Project Manager
The PM oversees all personnel, technical, quality, cost, and schedule aspects of the SI&T
process. In this context, the PM has the overall responsibility for the completeness of
development and testing efforts. The PM is the principle point of contact (POC) for the entire
STO, including CM, QA, testing, and development groups. The PM establishes the direction and
management controls to ensure the success of all project activities and the resolution of issues
that may inhibit the SI&T process.

Within the STO, depending on the size and scope of the project, the PM will meet with various
personnel from supporting organizations. These personnel include the Executive Manager,
Configuration Management Office (CMO), and Quality Assurance Office (QAO) and they plan,
prioritize, and coordinate testing tasks and procedures within their organizations. In this way,
standards and procedures developed for the project life cycle are incorporated into the SI&T
process. The PM then has the flexibility to assign tasks to personnel with appropriate expertise.

Quality Assurance Group
QA is the process that evaluates the form, structure, and/or compliance of a system in relation to
applicable standards. QA provides standards that ensure all Quality Control (QC) requirements
are implemented during the SI&T process. The QA group provides evaluation disciplines to the
SI&T process.

The QAO is the officiator of the QA system life cycle process. The QAO develops standards
and procedures used to implement QA functionality throughout the SI&T process. Although the
QAO is responsible for reviewing and auditing the entire system project, this subsection only
discusses QA as it relates to SI&T and the form, structure, and/or compliance to the SI&T
processes.

The QA group reports directly to the PM. The QA group provides the PM with the assurance
that all QC requirements for SI&T process are met by conducting reviews and/or audits of
testing activities. The QA group creates both formal and informal reports from the results of the
reviews and/or audits. Throughout the SI&T process, the QA group provides the following
information, to be used in the TPM process:

• Evaluation of the system/test corrective action process.

2

• Evaluation of the CM process.

• Evaluation of all system/test documentation.

• Evaluation of all guidelines, test cases, and test case procedures.

• Creation of measurement information.

Configuration Management Group
CM controls the integrity of the project being developed and tested. CM is the vehicle that
manages and controls changes/modifications made to documentation, software, and
environments during the life cycle of the SI&T process. The CM group provides the disciplines
that apply technical and administrative direction and control to the SI&T process.

The CMO is the officiator of the CM system life cycle process. The CMO develops standards
and procedures used to implement CM functionality throughout the SI&T process.

The CM group reports directly to the PM and executes baseline control, version control and
identification, and change control standards and procedures throughout the SI&T process. The
CM group creates both formal and informal reports based on progress of the testing life cycle.
Throughout the SI&T process, the CM group provides the following control over information
used in the TPM process:

• Ensure that all formal software, hardware, and test environment configurations, as
specified in the Software Requirements Document (SRD) and System Test Plan
(STP), are placed under CM control.

• Ensure that all formal documentation is placed under CM control.

• Ensure that formal release procedures for CM approved software, documentation, and

test environment versions are established.

• Ensure prevention of unauthorized changes to controlled software, documentation,

and test environment, and ensure incorporation of all approved modifications/
changes.

• Track and report system problems.

• Create measurement information.

3

System Development Group

The System Development (SD) group interacts directly with testing group functions; however, it
remains a separate entity within the STO. This separation ensures the objectivity of the testing
group, when evaluating system requirements and quality.

Within the realm of testing, the SD group is responsible for the analysis, design, testing,
implementation, quality, and documentation of the Software Unit (SU) Test phase testing. The
SD group reports schedule, quality, technical performance, and documentation of the SU Test
phase effort to the PM. In addition, the SD group ensures that policies and procedures
established for the Software Development Files (SDFs) are followed and provides
comprehensive SU Test phase testing coverage, which will contribute to the overall success of
the testing process.

During the Integration Test, Performance Test, and System Qualification Test (SQT), the SD
group is responsible for the repair of all software problems reported and cooperates with the
testing group to ensure the reported problems are solved and tested in an expeditious manner.

The SD group provides the PM with requested measurement information regarding all efforts,
activities, and responsibilities during the SI&T process.

Test Manager

The Test Manager (TM) manages and guides all integration and testing functions of the SI&T
process. The TM will specify test standards, allocation of resources, test scheduling, and
management of the test engineers. Additional TM responsibilities include:

• Develop software test process standards in a concise and usable form and the process
by which the standards are communicated to other groups of the STO.

• Create software test methodologies.

• Format specified standard tools and technologies that support the SI&T processes.

• Schedule of time and resources, for both hardware and software testing.

• Resolve issues that may obstruct or inhibit the testing schedule or effort.

• Collect all measurement information requested by the PM.

Test Engineer
The test engineer(s) is responsible for testing the system during the SI&T process. The test
engineer(s) is responsible for development and creation of the STD. It is the responsibility of the

4

test engineer(s) to ensure STP and STD tasks are implemented during the SI&T process. The test
engineer(s) performs the Integration and Performance Test phase testing. During the SQT phase,
the test engineer(s) may or may not perform the testing. If, during the SQT phase, the test
engineer(s) do not perform the testing, they act as witnesses of the testing. As the test case
procedures are executed, the test engineer(s) communicates the status of testing to the TM.

Test engineer(s) author the System Test Report (STR) at the end of Integration Test,
Performance Test, and SQT phases of the SI&T process. The test engineer(s) documents
problems encountered during testing by creating SPRs. It is the test engineer’s responsibility to
re-test SPRs after they are returned from the SD group and ready for re-test. After re-testing, the
test engineer(s) recommends closure of the SPR or returns the SPR to the SD for further
investigation and repair(s).

5

This page intentionally left blank

6

 TEST PERFORMANCE MEASUREMENTS OVERVIEW

Measurement is a key element of successful management in every well-established engineering
discipline. TPM present an approach for tailoring and implementation of an effective
measurement process for software-intensive projects. The objective is to provide PMs with the
system information required to make informed decisions that impact project cost, schedule, and
technical objectives.

TPM describe system measurement as a systematic but flexible process that is an integral part of
the overall project management structure. Project issues drive the TPM process. The process is
adaptive to meet the specific information needs and characteristics of each individual project.
The process is based on a proven set of system measurement principles derived from actual
experience on government and industry projects. These principles represent measurement “best
practices” and make the TPM process an effective management tool, not just another project
management “requirement.”

The TPM process provides a foundation for objectively managing the technical and acquisition
aspects of a software-intensive project. The process, implemented either as a stand-alone
discipline or integrated with project risk management and financial performance management
techniques, establishes a basis for informed decision making and communication throughout the
STO.

TPM outlines and provides guidance for processes and procedures necessary for consistent
construction of appropriate measurement plans. Appropriate measurement plans are based on
the availability of the documentation necessary for the assessment, reporting, and tracking of
information technology SI&T projects and tasks.

Measurement Implementation Roles
The TPM process is an integral part of the system and/or software testing process. Many
members of the STO play important roles. Appropriate resources must be allocated for the TPM
process to work effectively.

The most important roles in the TPM process are as follows:

• Executive Manager. The executive manager is generally an organizational or
enterprise manager responsible for multiple projects. This manager defines higher-
level performance and business objectives and ensures that individual projects
support the overall organizational strategy. TPM helps the executive manager
determine the status of individual projects and make decisions that apply across the
organization.

1

• Project Manager. The PM is responsible for identifying issues, reviewing analysis

results, and acting on measurement information. In the optimal case, both the system
development and testing group will have PMs who use TPM information to make
decisions for their respective group and to communicate objectively between the
groups.

• System Test Organization. The STO is responsible for the day-to-day development

and testing of a system or software application. The SD, Test, QA, and CM groups
can be comprised of both government and industry personnel or organizations, and
may be defined within an Integrated Product Team (IPT) structure. STO groups are
responsible for collection of measurement data on a periodic basis and all groups use
the measurement results to guide SI&T activities.

• Measurement Analysis Personnel. The measurement analysis role can be assigned

to an individual or a team. Responsibilities include developing the project TPM plan,
if necessary, collecting and analyzing measurement data, and reporting results
throughout the STO. Each organization within the STO that makes critical system
decisions should have an independent measurement analysis capability.

Ensure that all participants involved in the TPM process understand and commit to their
responsibilities. This ensures that accurate information is available to support effective
communications and informed decision making.

Communication
The TPM process is used as a basis for objective communication. Measurement activities should
not be conducted in isolation by any of the groups that comprise the STO. The PM should
communicate with the entire STO at each step of defining TPM requirements and analyzing
measurement data. Most decisions based on the measurement data will affect more than one
group. For example, a corrective action that is identified and planned in cooperation with the SD
group is more likely to succeed than one that appears to be arbitrarily imposed by the system test
manager.

While there may be some differences between the issues of concern to the SD group and the Test
group, there should also be a high degree of commonality. It is important to ensure that all
parties use the same data and have a common understanding of data definitions and know what
the data represents.

2

 TAILORING TEST PERFORMANCE MEASUREMENTS

The first part of the TPM process focuses on identifying the measurement requirements to
address specific project/task issues. This process includes identifying project issues, selecting
and specifying appropriate measures, and integrating the measures into the SI&T process. The
first part of the TPM process and its component activities are discussed in this section

The remainder of the TPM process, application of TPM and required measures needed to support
TPM, is a very interpretive process. TPM may be deeply interwoven into the project, or it
maybe a “stand alone” adjunct to the project. The application of TPM maybe a formal process or
an informal process, depending on the complexity and size of the project. A fictional example
that follows measurement requirements to address specific project/task issues of the TPM
process is included in Appendix A, and provides an example of “one of many” procedures for
applying TPM.

Test Performance Measurements Tailoring Overview

This section outlines the process for defining TPM requirements and developing an appropriate
measurement plan. The objective of the measurement tailoring process is to define the set of
measures that provides the greatest insight at the lowest cost. The tailoring process focuses
effort and resources on obtaining information regarding high priority issues first.

Project issues drive the entire measurement process. The issues determine which measures are
selected, how measurement results are analyzed, and how managers make their decisions.

Figure 4.1 depicts the measurement tailoring process.

1

Figure 4.1 Measurement Tailoring Process

The first activity in the tailoring process is the identification and prioritization of specific project
issues. Project issues are derived by reviewing project information, such as objectives,
constraints, technical strategies, estimates, and risk analysis results, as well as general
organization requirements. The basic concern in this activity is identifying system measures that
have the greatest potential impact on the project.

The next tailoring process activity is to define appropriate project-specific measures. These
measures are selected by applying defined measurement tailoring mechanisms of common
system issues, measurement categories, and measures. The basic objective in this activity is to
select measures most appropriate to the project issues.

The final tailoring activity is integrating the measures into the SI&T process. The system
environment, development approach, and management process affects the definition, availability,
and utility of the desired measures. Existing measurement implementations, if any, should be
considered for their applicability to the project information requirements. Results of this
integration are documented in a Project Management Plan. This plan may be formal or informal,
depending on the nature of the project.

Figure 4.1 shows that the tailoring process is iterative. New issues may be discovered or
refinements may be proposed in the course of examining the SI&T process. Alternative
measures may be proposed to satisfy project office information needs, while minimizing cost.
Tailoring may also occur after the initial Project Management Plan is developed. New issues and
new opportunities for measurement may be discovered as the project matures and previously
identified project issues may decrease in importance.

2

Identify and Prioritize Project Issues

An effective measurement process helps the PM recognize and deal with problems and risks that
might prevent the project from being successful. TPM refers to these obstacles as issues. TPM
tailoring process begins with the identification of project-specific issues.

The shaded area of Figure 4.2 shows the detailed tasks that comprise the identification and
prioritization of project issues. Potential issues are identified using all available project
information. This task can be either formal or informal, and should address the concerns of all
STO groups involved in the project. The results of the project risk assessment process, if any,
should also be integrated into the issue identification task. Identified project issues are mapped
to TPM common system issues. This mapping of project issues to common system issues helps
in the selection of appropriate measures for each issue from the Table 4.1, Measurement
Categories and Related Questions. New or revised issues and measures may be defined to best
support the unique aspects of a specific project. Finally, project issues are prioritized. The
priority assigned determines the emphasis placed on measuring and tracking the issue through
the measurement process.

Figure 4.2 Identify and Prioritize Project Issues

Issues
Issues are areas of concern that may impact achievement of a project objective. Issues include
problems, risks, and lack of information. These terms are summarized below:

• A problem is an area of concern that a project is currently experiencing or is
relatively certain to experience.

3

• A risk is an area of concern that could occur, but is not certain.

• A lack of information is an area where the available information is inadequate to

reliably predict project impact.

Identifying something as an issue does not necessarily mean that it is a problem. In fact,
identification of issues and careful tracking minimizes the potential of serious problems
occurring that could negatively impact project progress and/or success.

In addition to issues identified at the start of the project, new issues may arise as the project
progresses. New or evolving requirements, changes in technology, and other factors usually
result in the identification of derived issues as the project progresses. Consequently, the tailoring
process usually needs to be revisited periodically during the project life cycle.

Risk Management

Risk management is a discipline separate from TPM that is instrumental to the realization of
success during a software-intensive project. The risk management process is implemented in
parallel with the TPM process and interfaces with the TPM process directly. Risk management
consists of two primary activities: risk assessment and risk management. Risk assessment helps
identify, analyze, and prioritize project risks. Risk management focuses on planning,
monitoring, and controlling identified project risks. Both activities work in conjunction with the
measurement process.

The risk assessment process is closely aligned with measurement tailoring. As depicted in
Figure 4.2, risk assessment delivers formally defined and prioritized risk information into the
measurement tailoring process and specifically supports project issue identification. Risk
assessment may point to potential issues with requirements, technology, process, cost, or
schedule. Even if a formal risk assessment is not performed, issues can still be identified. The
measurement analyst should also understand that not all risks are quantifiable and that not all
issues are risks. Therefore, risk techniques alone may not be adequate to effectively tailor a
measurement process.

Risk assessment results typically include a list of risk items that are quantified in terms of their
significance. Two dimensions for risk quantification are:

• Probability -- How likely is it that a risk will result in a problem?

• Impact -- How much impact is the potential problem likely to have on project
success?

4

The numeric value of probability and impact information is commonly referred to as risk
exposure and is used to help prioritize the identified risks.

Risk assessment results are a primary input to the project risk management plan. It is important
to understand the behavior of project risks. Overall exposure of a given risk to the project can
change based on when it is expected to occur and where it is expected to be applicable within the
project STO. Identified project risks tend to change over time and are influenced by project
events.

Risk management and measurement are synergistic. Both disciplines emphasize the prevention
and early detection of problems rather than waiting for problems to occur or become critical.
The risk management process helps identify and prioritize system issues. The measurement
process helps quantify the likelihood of a risk occurring and the amount of potential impact.
Risk management usually addresses more issues than can be quantified using measurement. For
example, environmental and political risks are included in the risk management process but are
not generally relevant with respect to system measurement.

Select and Specify Project Measures
This section describes the activity in the TPM tailoring process that helps select the best set of
measures to address the identified project issues. Since every project is described by a unique set
of issues, the measurement requirements for each project are also unique.

The tasks in the measurement selection activity are depicted in Figure 4.3. These tasks include
identification of appropriate measurement categories for the identified issues, selecting the most
appropriate measures within the categories, and specifying data requirements to define and
implement measures. These tasks are discussed in more detail in the following sub-sections.

5

Figure 4.3 Measurement Selection and Specification

Although the issues that must be addressed primarily drive measurement selection, the overall
characteristics of the project and its software development approach should also be taken into
consideration. The types of graphs in reports (i.e., indicators) produced during analysis also
affect measurement choices. Anticipating the types of graphs and reports that will help define
required measures and data attributes is necessary.

Select Measurement Categories

The first task in the selecting and specifying project measures activity is to select the
measurement category that best addresses the identified issue. If several issues are similar, then
the same measurement category may suffice for those issues.

One method of determining whether or not a category matches an issue is to consider the types
of questions the measures in that category answer. Table 4.1 provides questions corresponding
to TPM categories. This table can be used to determine the measurement category or categories
that most closely align with a specific project issue.

6

Issue Measurement Category Question Addressed
Schedule and
Progress

Milestone Performance

Work Unit Progress

Incremental Capability

Is the project meeting scheduled
milestones? Are delivery dates
slipping?

How are specific activities and
products progressing?

Is capability being delivered as
scheduled, in incremental builds and
releases?

Resources and
Cost

Personnel

Financial Performance

Environment Availability

Is effort being expended according to
plan? Is there enough staff?

Is project spending meeting budget and
schedule objectives?

Are necessary facilities and equipment
available, as planned?

Growth and
Stability

Product Size and
Stability

Functional Size and
Stability

Are the product size and content
changing?

Are the requirements and associated
functionality changing?

Product Quality Problems

Complexity

Rework

Is the system “good enough” for
delivery to the customer? Are open
problems being closed?

Is the software testable and
maintainable?

How much additional effort is being
expended due to changes and errors?

Development
Performance

Process Maturity

Productivity

Will the developer be able to meet
project constraints? Is the developer
likely to succeed given past
performance?

Is the developer efficient enough to
meet current commitments?

7

Issue Measurement Category Question Addressed
Technical
Adequacy

Target Computer
Resource

Technical Performance

Technology Impacts

Utilization: Is the target computer
system adequate? Is computer
hardware suitable and available for
expansion?

Are project requirements, such as
response time and accuracy, being met?

Is the planned impact of the leveraged
technology, such as common
architectures and Commercial-Off-the-
Shelf (COTS), being realized?

Table 4.1 Measurement Categories and Related Questions

As an example, consider the common software issue of Schedule and Progress. Three
measurement categories, Milestone Performance, Work Unit Progress, and Incremental
Capability are mapped to this issue. The measures in these categories address schedule- and
progress-related concerns, but they do so with different types of information and at different
levels of detail.

Milestone performance measures provide basic start and end dates for defined software activities
and events. This is adequate for developing and reviewing Gantt schedules; however, the
measures do not address the degree of completion of individual software activities and products
at any point in time. More detailed schedule and progress information is provided by the
measures in the Work Unit Progress measurement category. Lastly, the measures in the
Incremental Capability category show whether or not software components or functions are
being completed, as planned, for each version or release in an incremental software development
approach.

For example, if the project-specific issue is “progress of COTS software integration,” then the
work unit progress category is appropriate because the issue involves a question about the
progress of a specific activity, namely integration. If the project-specific issue is “budget
overruns to fix unanticipated problems,” then the rework category is pertinent because the issue
concerns the extra effort applied to correct latent defects.

Always choose the measurement category that provides the best fit for the prioritized list of
issues. For critical or high-priority issues, consider selecting more than one measurement
category. This will lead to different measures and measurement information, allowing for more
in-depth analysis.

8

Select The Applicable Measures

The second task in the activity of selecting and specifying project measures is to choose
measures that best address the specific project issue(s). The overall objective is to define
measures that adequately address the identified issues and are practical to implement, given the
management and technical characteristics of the project.

A number of measures may apply to one issue. In most cases, it is not practical to collect all or
even most of the possible measures for an issue. Generally, more measures should be collected
to track high-priority issues. Identifying the “best” set of measures for a project depends on a
systematic evaluation of potential measures with respect to issues and relevant project
characteristics.

For example, if “growth and stability” is selected as an issue, requirements and software size
measures will be used to track it. The appropriate measure will depend on the nature of the
project. Language type and application domain influence the choice of a size measure selected.
Information systems may use function points to measure size, while other systems may use lines
of code.

Once a measurement category is selected, a measurement selection criterion can be applied to
identify the best measures for the project. Measures are selected based on the following criteria:

• Measurement effectiveness. How effective is the measure in providing the desired
insight? Is it a direct measure of the software characteristic in question? Does the
measure provide insight that relates to more than one issue?

• Domain characteristics. Are certain measures more likely to be used in a given

domain? For example, response time is widely used to measure target computer
resource utilization in information systems, while memory utilization is more widely
used in Unix, Windows New Technology (NT), or Graphical User Interface (GUI)
applications.

• Project management practices. Can existing management practices be leveraged to

support the measurement requirements? For example, is a scheduling system in use
that provides one or more of the desired measures?

• Cost and availability. What data should be readily available within the context of

the project? How much effort will be required to extract and package the data for
analysis? For example, extracting data using electronic sources usually costs less
than manual collection.

• Life-cycle coverage. Does the measure apply to the life-cycle phase under

consideration? Does it apply to multiple life-cycle phases?

9

• External requirements. Has the overall organization or enterprise imposed any
related measurement requirements.

• Size/origin of software. Does the size or scope of the software project justify a

larger investment in measurement? Does this measure make sense for this type of
software, such as COTS?

In most cases, the selection activity requires that tradeoffs be made among the measurement
selection criteria. For example, a given measure may directly address a high-priority project
issue, but may be too costly to implement in terms of time and resources. Some measures, when
used in conjunction with other specific measures, support multiple analysis needs. For example,
lines of code are used to calculate and analyze software development performance in terms of
productivity and quality. This measure may therefore be important even if Growth and Stability
is not a priority issue.

In general, measures from different measurement categories within the same common software
issue can be substituted with some degree of effectiveness. Also, measures that are categorized
under different common software issues may provide additional insight into the issue in question.
Obviously, it is better to use a substitute measure than to select a measure that cannot be
implemented. After the initial measures are selected, they should be reviewed to ensure that the
high-priority issues are addressed and that there is adequate coverage across all identified issues.

Specify The Data Requirements
Once the measures are selected, the last task of the measurement selection and specification
activity can be performed. This is to specify the data requirements for each identified measure.
The data requirements defined in this task become the basis for agreement with the developer to
define what and how data will be provided. Within an IPT environment, specification should be
done in conjunction with the developer. For an in-house or commercial development, the data
requirements still need to be specified and defined; however, this may be done more informally
in some cases.

The appropriate level of detail for the collection of measurement data must be defined. The
frequency and format of data deliveries must also be specified, since data may be reported less
often than collected by the developer.

To support the measurement analysis process, data must be collected at a level of detail that will
allows isolation of problems. Some factors to consider in determining the appropriate level of
data collection include:

• Requirements and size data are normally tracked at the CSCI level. Consider tracking

size data at a lower level, if the CSCIs are large.

10

• Progress is normally reported at the level of major activity, such as design. Consider
tracking at the level of sub-activities, if the schedule is long.

• Keep data from subcontractors separate, if the subcontractors have significant

software development responsibility, or use a different development process.

• Maintain separate counts of size data for each language type, unless the languages are
comparable.

• Maintain separate counts of size data, level of effort, and problem reports for each

category of software, such as new development, reuse, and COTS, especially if
project success depends on realizing some specific benefit from these approaches.

• Keep separate counts for each priority category of SPRs, especially if the project

maintains a large backlog of problems.

In determining the appropriate level of detail, the cost of data collection, data processing, and
analysis must be balanced against the need for detailed insight into project issues. More detailed
data allows greater flexibility in analysis in terms of defining new indicators and determining the
source of potential problems. However, a greater level of detail also implies a greater volume of
data and a greater cost for the measurement process. More detailed data should be sought to
track those issues considered to be most important. All of these recommendations for selecting
measures and their level of detail must be tempered with an understanding of the developer
process.

Selecting and Specifying Measures For Existing Projects
TPM selection and specification guidance is generally structured to support a sequential tailoring
of the measurement process. In some instances, the need to implement a measurement process is
driven by a significant project event or issue that must be supported by objective system
information immediately. In other cases, new policy guidance or other external requirements,
such as a major milestone review, make it necessary to implement measurement on a project that
is underway.

The tailoring approach still begins with the identification and prioritization of specific project
issues. In all likelihood, key issues are already identified and the immediate objective is to
identify data that can be used to provide the PM with meaningful information. However, less
emphasis should be placed on defining data requirements and more emphasis placed on
identifying existing measurement opportunities. Successfully implementing measurement on an
existing project means taking advantage of measurement opportunities present in the project
software management and technical processes. Often the required data exists, but is not mapped
to the issues or collected in any systematic way.

11

Integrate Measures Into The Software Development Process

Up to this point, the measurement selection process has largely been driven by “what” the PM
needs to know about the issues. The next task is to look at “how” the measurement process will
actually function within project management and technical processes. Data available from the
developer may not map exactly into the ideal defined measurement requirements.

This final tailoring activity includes three tasks, as depicted in Figure 4.4. First, the software
development process and environment are characterized. Next, opportunities for measurement
within that environment are identified. Finally, measurement requirements are specified,
typically in a Project Management Plan.

Figure 4.4 Integrate Measurement Into the Software Development Process

To better integrate the measures into the software development process during the course of
performing these tasks, the developer should propose changes to project measurement
requirements. The measures and data requirements selected in the tailoring activity form the
basis for agreements between managers and the developer about the specific data elements to be
provided for analysis. This agreement may be accomplished via a formal contracting process or
a less formal understanding, in the case of internal developments. The result of this activity is a
definitive statement of the measurement approach to be followed, often documented in a
measurement plan or incorporated into the Project Management or Software Development Plans.

The tasks required to integrate measurement requirements into the software development process
are discussed below.

Characterize Software Environment
The development process used by the developer defines how software is measured. The
definition of a measurement process cannot be based solely on the objectives of the managers.

12

To collect measurement data in the most cost-effective and useful manner, the software
development process of the developer must be considered. Project issues identify information
the measurement process must derive from the collected data. The software development
process determines what specific data items can be collected and how that can be accomplished.

One purpose of the measurement process is to provide insight into developer performance.
Measures collected must objectively represent activities and products of the software
development process. As much as possible, managers should select measures that are normally
collected by the software developer. The software development processes employed by any
software subcontractor should be considered before a decision is made on which measures are
collected.

Some key factors to consider when deciding which measures to collect follow:

• The life-cycle model or activity structure used to define the software development
process.

• The software product structure, including versions and releases defined by the

developer.

• The product line architecture.

• Current measurement activities employed by the developer.

• Software technology, including programming language, design language, and tools.

• Planned source of the software; such as COTS, newly developed code, and reuse.

• Management, review, testing, and inspection practices employed by the developer.

• Engineering and management standards to be applied.

The software development process has major impact on the cost and effectiveness of the
software measurement process. Whenever possible, current practices of the developer and
existing data collection mechanisms should be used. New measurement requirements should be
kept at a minimum. Use the project Work Breakdown Structure (WBS), including product
structure and activities, as the basis for measurement.

To the extent that activities of the software development process are well-defined, measuring
them provides useful information. An ad-hoc or ill-defined process makes it difficult to tell
exactly what is being measured.

13

For many issues, the data available changes across life-cycle activities. For example, during SU
Test phase, progress may be measured in terms of units designed and coded. During remaining
SI&T phases, progress may be measured in terms of tests attempted and passed. The
measurement analyst must ensure that relevant measures and indicators are provided throughout
the project life cycle, and make modifications, as appropriate.

Before measurement requirements are finally agreed to, managers should understand the
software development process and obtain direct feedback from the developer on project
measures. The measurement process should not be used to force process changes on the
developer. Giving appropriate consideration to the software development process helps ensure
that useful data is provided with the lowest impact and cost.

Identify Measurement Opportunities
During measurement planning, high priority should be given to identifying any measurement
mechanisms already in place within the development organization. This is especially important
when implementing measurement on an existing project. Special attention should be given to
databases and tools supporting project management, QA, and CM. Extracting and delivering
data from electronic sources is usually more cost-effective than manual or paper forms-based
collection methods.

Software data comes from many sources. Three primary forms of data include historical data
from past projects, planning data, and actual performance data, as follows.

• Historical Data. Most actual performance data originates with the developer. This
data includes information collected by the software customer from past projects, as
well as data collected by the developer from previous projects. This data is used to
generate estimates and determine the feasibility of plans.

• Plan Data. The customer often produces initial planning data, which typically

contains the budgets and schedules against which progress and expenditures are
compared. Data must be collected from both initial plans and later re-planning and
include incremental changes to plans. As the project evolves, the corresponding
actual data on problems, progress, size, and effort will become available.

• Actual Performance Data. Many sources of data exist within the software

development process. The number of software problems can be obtained from CM
databases, grouped by severity, if they are properly structured. The number of hours
expended, by activity, can be obtained from financial management records. Progress
data usually comes from he detailed work plans maintained by technical managers
and team leaders. Consistent use of project management tools facilitates data
collection.

14

The number of SUs, lines of code, and changes to software and documents can usually be
obtained from CM records and reports. Alternatively, a source code analyzer may be used.
Product information, such as number of lines of code or pages, can also be captured during
reviews and inspections. Note that in all these cases, the most efficient method of collecting the
desired data depends on the nature of the software development process. Table 4.2 shows some
typical sources of data.

Measurement Category Electronic Source Paper Source
Milestone Performance Project Management System Schedule
Personnel Cost Accounting System

Time Reporting System
Estimation Tools

Time Sheets

Product Size and Stability Static Analysis Systems
CM System

Product Listing

Functional Size and
Stability

Function Point Counting
Systems
CM System

Requirements
Specifications

Defects Problem Tracking System
Test Automation System
CM System
Computer Aided Software
Engineering (CASE)
Tools/Interactive Development
Environment (IDE) Tools
Test Automation Tools

SPRs
Review/Inspection
Reports

Complexity Static Analysis Systems Review/Inspection
Reports

Table 4.2 Typical Sources of Data

For important issues, look for sources of data that are available early. For example, if quality is a
major concern try to identify sources of inspection data during design, rather than waiting for
SPR data from testing.

Specify Measurement Implementation Requirements
The last task in the activity of integrating measurement into the software development process is
to define data and implementation requirements for each selected measure. As much as possible,
take advantage of the existing measurement opportunities defined in the preceding task.

This general specification guidance outlines the requirements related to defining and collecting
measurement data. These requirements help define the overall measurement implementation

15

approach on the project and help convey to the developer how the measurement plan is to be
implemented. The general requirements include the following:

• Data Types. Measurement data that represents plans, changes to plans, and actual
information for each measure should be collected and reported. The developer should
updated plans and estimates regularly. Effective insight can be derived early in the
project by analyzing how the planning data is changing. Extremely stable plans may
indicate that the developer is not adjusting to actual project events. For many
projects, some plans and estimates are difficult to collect due to limitations of the
software development process. For example, not everyone can adequately project the
number of expected SPRs. In these cases, trends based on the periodic collection of
actual data may be adequate to support measurement analysis requirements.

• Measurement Definitions. During this task, the developer identifies the actual

measurement definitions to be used for each specified measure. These definitions
sometimes vary over the course of the project, as software development processes are
modified and updated. Changes to the definition and interpretation of any measure
should be defined by the developer and relayed to the PMs. In many cases, this
information is included in the periodic delivery of the measurement data. For many
measures, such as lines of code, estimation methodologies and how the actual lines of
code are counted may be different. This can result in variances between plans and
actual data relate to definitions, not performance. These estimation inconsistencies
should be identified. Many measures require that both estimation and actual counting
methodologies be defined, as well as the “exit” criteria for measuring actual data.
Definition of the measures is extremely important; it provides the basis for correct
interpretation of associated data.

• Data Dates. For each measure, both the date that the measurement data was

collected and the date that it is reported should be identified. This allows the
timeliness of the data to be assessed and supports the correlation of related
measurement data during analysis. For example in productivity calculation, the time
period during which the number of lines of code is produced should correspond to the
time period of the labor hours used to produce them. The time between data
collection and delivery to the PM office should be minimized. This allows for timely
analysis and feedback on the issues.

• Collection Frequency. Measurement data should be collected periodically, not by

event. This is monthly on most projects; however, the period can be adjusted. Data
may be collected more frequently as a milestone nears. For example problem report
data is often collected and reported on a weekly basis during SI&T phases. The
frequency of collecting and reporting measurement data should be consistent with the
level of risk associated with each issue.

• Measurement Scope. If more than one organization is involved in developing the

software for a project, measurement data should be collected from each organization

16

and identified by source. This is usually the case when one or more software
subcontractors work under a prime contractor. In many instances, individual
organizations have different software development processes, which result in
different definitions for the same measure. This prevents the combination and
aggregation of some types of measurement data from the different organizations. In
these cases, the data from each organization must be managed and analyzed
separately. For example, a system level productivity calculation may be invalid if
subcontractors count labor hours and software size using different definitions. In
some cases, different measures will be used by different organizations to address
similar issues.

• Project Phase. Measures selected and integrated into the project should be applied to

all life-cycle phases, including project planning, development, and sustainment
engineering. For most measures, planning data will be available initially, followed by
actual data as the project progresses and planned system process activities are
implemented. Even when actual data is available, the related measurement plans and
estimates should be updated periodically.

• Data Reporting Mechanisms. Reporting mechanisms for delivery of data from the

developer may vary based upon the actual measures selected and internal software
and project management processes of both the developer and the project office. Data
for many measures, such as SPRs, are usually available from an existing CM database
that can be accessed on a real-time basis. In other cases, such as with level of effort,
size data, and schedule measures, the data can be formatted into electronic media and
delivered. Some data may need to be delivered in hard-copy format. During
tailoring, the developer identifies available mechanisms. The preferred method is
electronic transfer of data on a periodic basis.

Project Measurement Plan

The results of the final activity of the tailoring process are documented in a Project Management
Plan. The plan lists the issues and the measures required to address the issues. The plan
describes the process used to collect and analyze the data. It explains how the developer and
PMs use measurement results for decision making and communication within the project.

TPM Project Management Plan may be formal or informal. The plan should be modified, as
required, to accommodate changes in information needs and software development processes.
The plan may be produced as a separate document, or included in the Software Development
Plan (SDP), the Software Maintenance Plan (SMP), or similar planning document. Regardless of
the formality of the measurement plan, it should incorporate the following information:

• Issues and Measures. Lists identified issues and selected measures and show their
relationships.

17

• Data Elements. Defines structures, attributes, and data items required for all
measures.

• Data Definitions. Provides a complete and unambiguous definition for each data

item. Defines methodologies used to calculate derived measures, such as
productivity.

• Data Sources. Identifies specific sources, including person, tool, report, and activity,

for all data items.

• Level of Measurement. Determines the level of detail for data items to be collected
and delivered for analysis.

• Aggregation Structure. Defines structures for combining data items to provide

system and other aggregations.

• Frequency of Collection. Specifies the frequency of data collection and delivery for
analysis. This is typically monthly.

• Method of Delivery. Defines methods for accessing data, such as access to a

database or electronic media.

• Communication and Interfaces. Identify POCs for all data sources, reports, and
requests for clarification.

• Frequency of Analysis and Reporting. Determine how often measurement results

will be provided to the project. This is typically monthly.

Table 4.3 contains a more detailed sample outline for a Project Management Plan.

Project Measurement Plan Outline
Part 1. Introduction
-
-

Purpose
Scope

Part 2. Project Description
-
-

System Technical Characteristics
Project Management Characteristics

Part 3. Measurement Approach

18

-

-
-
-
-

How to Integrate Measurement Into the System Technical and Management
Processes
How to Collect and Use Data
Measurement POCs (developer, subcontractors)
Measurement Responsibilities
Organizational Communications and Interfaces

Part 4. Description of Project System Issues
- Prioritized List of System Issues and Objectives

Part 5. System Measures and Specifications
- Include for Each Selected Measure (for each developer, if different)
 a. Measure name
 b. Issue measure maps
 c. Data items
 d. Attributes
 e. Aggregation structures
 f. Collection level
 g. Criteria for counting measured values
 h. Data definitions
 i. Estimation methodology
 j. Collection and reporting mechanisms
 k. Source of data
 l. Collection and reporting frequency

Part 6. Project Aggregation Structures
-
-

Component Aggregation Structure, such as CSCIs, units
System Activity Aggregation Structure, such as Requirements Analysis, Design,
Integration, Performance, and System Qualification Test Aggregation Structure

Table 4.3 Sample Outline for Project Measurement Plan

The Project Management Plan is coordinated with the Risk Management Plan and the Financial
Performance Management Plan. All significant quantifiable risks should be reflected in the
Project Management Plan. The Financial Performance Plan is based on objective information
produced by the measurement process, rather than on subjective assessments of percent complete
or remaining effort. For small projects, this information can be included in one Project
Management Plan.

Organizational Measurement Plan
Most large projects will require the development of a unique Project Management Plan.
However, some organizations can define a Project Management Plan that covers many projects.
This implies that a common measurement set can be defined for the organization. A common
measurement set makes sense only for projects that share the following characteristics:

19

• Similar software issues.

• Common software development processes (standards, practices).

• Stable technology (languages, tools, environment, configuration, etc.).

• Similar application domains.

Imposing a standard measurement set in situations where these conditions are not satisfied may
burden individual projects with unnecessary measurement requirements, while missing important
project issues that should be tracked.

A common data set or normalization scheme may be necessary for other types of analysis to
support process improvement and business purposes. Although, this document focuses on
project-level analysis, it provides a basis for organizational and executive-level measurement.
Recording characteristics that drive decisions during the measurement selection activity may be
important later to determine how to normalize data for these purposes.

In addition to project-specific measurement requirements discussed in this section, other users
may have other valid requirements that the project’s measurement process must address. Other
users include executive managers performing an oversight function and software engineering
process groups working on process improvement. Most of the data required by these other users
originates at the project level. Obtaining good data for executive review and process
improvement depends on establishing an effective project-level measurement process.

Most organizations require formal reporting of actual cost and schedule progress against budget
baselines. The financial performance management system should be based on results from the
measurement process.

Consider measurement requirements from all sources when developing a Project Measurement
Plan. This enables a measurement analyst to minimize redundancy and inefficiency that can
result from multiple data collection efforts. Focusing on measures and analyses that benefit
multiple users maximizes the value of the implemented measurement process.

20

This page intentionally left blank

21

 EFFECTIVE USE OF MEASUREMENT DATA

After TPM is planned and applied the results are presented to the project/task management. This
illustrates various ways measures collected for TPM can be presented to and used by project/task
management to identify, track, analyze, and resolve issues. The following examples of
information presentation can be used a tool to communicate status and other additional
information to all groups within the STO or the developer organization(s).

 Tracking Test Effort Effectiveness
The effectiveness of the testing effort is measured constantly throughout the SI&T process.
Measurements specific to the following three items are discussed in this section:

a. The overall test effort in relation to software requirements.

b. The progress of the test effort in relation to test requirements.

c. The effectiveness of SPR identification and resolution.

These measurements address schedule and progress issues. Additionally, the measurements give
an indication of software project maturity and readiness for release.

 Traceability
Software requirements are identified in the SRD and used as the basis for creating the STP. Test
requirements are derived from software requirements and decompose to specific test cases in the
STD. Software and test requirements are organized and controlled through CM procedures. One
aspect of organizing and controlling requirements is traceability. Test requirements are traced to
software requirements, and conversely, software requirements are traced to test requirements.

Test cases decompose to test case procedures. Test case procedures are traced to test
requirements through test cases. As test case procedures are executed the Pass/Fail results are
tracked using standard test execution processes.

Traceability provides the ability to measure the testing effort in terms of software requirements.
Since the quantity of software requirements remains static from the beginning to the end of the
SI&T process through the end, they can be used as a measurement of effort expended on SI&T.

1

Measuring Test Effort Relative To Software and Testing Requirements

Reports are generated at regular intervals to define the number of software requirements tested
and the number of software requirements remaining to be tested. This information is presented
in reports that tabulate software requirements that are:

d. Traced to test requirements associated with test procedures that were executed and
passed.

a. Traced to test requirements associated with test procedures that were executed and

failed.

b. Traced to test requirements that are associated with test procedures that have not been
executed.

c. Traced to test requirements not associated with test case procedures.

d. Not traced to test requirements.

Table 5.1 depicts a sample of how these numbers are used to measure SI&T production through
software requirements.

2

 Software Requirements Planned Actual

a. Traced to test requirements associated with test case procedures
which have been executed and passed

N/A 500

b. Traced to test requirements that are associated with test case
procedures which have been executed and failed

N/A 50

Total
Tested

Total Software Requirements Tested (a + b) 500 550

c. Traced to test requirements that are associated with test case
procedures which have not been executed

100 75

d. Traced to test requirements that are not associated with test case
procedures

100 150

e. Not traced to test requirements 100 25
Total SR Total Software Requirements (a + b + c + d + e) 800 800
 Test Execution Remaining (c / (a + b)) % 16.67% 12.00%
 Test Development Remaining (d / Total SR) % 12.50% 3.13%
 Test Requirement Development Remaining (e / Total SR) % 12.50% 3.13%

Table 5.1 Sample Measurement of SI&T Production, Planned Versus Actual

The total of (a.) plus (b.) describes the quantity of software requirements tested. The total
indicated by adding (a.) plus (b.) can be compared to the quantity of software requirements
projected to be completed, which will indicate the planned versus actual testing progress. The
total software requirements tested can be compared to the quantity in (c.) to derive the
percentage of the testing effort that remains.

The quantity in (d.) indicates the test case procedure development effort remaining. It can be
used as a planning guide, as well as a comparison of planned versus actual test effort.

The quantity in (e.) indicates the effort remaining for defining test requirements and creating test
case procedures.

3

Charts similar to Figure 5.1 are used to display the relationship of actual versus planned test
effort, based on software requirements.

S o ftw a re R e q u ire m e n ts

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

P la n 5 0 0 1 0 0 1 0 0 1 0 0

A c tu a l 5 5 0 7 5 1 5 0 2 5

1 2 3 4

1 Total number of software requirements tested.

2 Software requirements traced to test case procedures not tested.
3 Software requirements not associated with test case procedures.
4 Software requirements not traced to test requirements.

Figure 5.1 Software Requirements Testing, Planned Versus Actual

Figure 5.1 contains four sections, each with two columns. Sections are identified in the legend at
the bottom of the chart. Section 1 indicates the quantity of software requirements tested. Section
2 indicates the quantity of software requirements for which test case procedures are developed
that are awaiting execution. Sections 1 and 2 indicate test execution progress relative to the plan
in a positive relationship. If the Actual column is greater than or equal to the Planned column,
the effort is considered successful. Beyond detailing planned versus actual effort, Section 2 can
be matched to Section 1. The relationship of Section 2 to Section 1 is a scheduling aid for the
test manager.

Section 3 and Section 4 indicate the progress of test development relative to the plan in a
negative relationship. If the Actual column is greater than the Planned column, the effort is not
considered successful. Section 3 indicates the quantity of software requirements for which test
cases are developed but test case procedures are not. Section 4 indicates the quantity of software
requirements for which test cases are not developed.

4

As the SI&T effort progresses, columns will grow higher from right to left on the chart.
Section 4 will have the highest numbers at the beginning of the project, and Section 1 will have
the highest numbers at the end of the project. At given points in the process, Sections 4, then
Section 3, and finally Section 2, will be empty.

Measuring the Effectiveness of SPR Identification and Resolution
The primary purpose of any testing program is the delivery of error free software that will be
integrated to become a system that satisfies defined design requirements. To achieve the goal of
error free software identification, tracking, and resolution of problems discovered during
software testing is a primary objective during the testing phases. Identification, tracking, and
resolution of problems during the testing phases are accomplished using SPR forms. The SPRs
are organized, controlled, and counted to indicate software readiness for release.

While the total number of SPRs is useful in planning efforts, it is not always a good indication of
the quality or effectiveness of independent testing. High quality SU testing, performed by the
software developer, will lower the number of problems detected and reported by the test group.

Useful measurements in reports designed to report problems identified fall into three categories.
The first is the number of SPRs in each state of the SPR life cycle, at a particular point in the
testing process. The second category is the average time for SPRs to transition from one state to
the next, in normal progression. The third category is the number of SPRs that do not follow a
normal progression. Each category is discussed separately later in this document.

Regardless of the category, SPR measurement is accomplished by providing a sub-measurement
by level of severity.

System Problem Reports By State of System Problem Report Life Cycle
Reporting by SPR life cycle state shows the number of SPRs a) submitted, b) postponed,
c) assigned, d) opened, e) resolved, and f) closed. Each of these numbers is important for
planning and scheduling. A separate total of SPRs in the duplicate state is generated to reflect
the entire SPR life cycle. A high number of SPRs reported, minus duplicates, may indicate
ineffective SU testing. A high number of postponed SPRs may indicate ineffective planning,
design, or development efforts. A high number of duplicate SPRs may indicate ineffective
integration testing (duplication of effort) or a lack of training for test engineers, in the software
application being tested.

5

The sample chart in Figure 5.2 contains six sections, one for each state of the SPR life cycle of
non-duplicate SPRs. The Submitted section indicates SPRs that have not gone through an SPR
Review. The Postponed section depicts reviewed SPRs that are awaiting future action. The
Assigned section depicts reviewed SPRs that are not been scheduled for repair by the system
development group. The Opened section depicts SPRs scheduled for repair by the system
development group. The Resolved section depicts SPRs repaired by the system development
group that are awaiting re-test by the test group. The Closed section depicts successfully tested
repaired SPRs.

SPR by State

0

5

10

15

20

High 10 0 2 1 1 9
Medium 18 4 6 5 15 7
Low 19 5 10 6 17 19

Submitted Postponed Assigned Opened Resolved Closed

Figure 5.2 System Problem Report Status by States

Each section in Figure 5.2 contains three columns that indicate levels of severity. The number of
SPRs in each section, by level of severity, can be used as a planning tool to gauge the effort
needed from the system software group and the test group to resolve outstanding problems.

The chart in Figure 5.3 contains three columns, High, Medium, and Low. Each column
describes a level of severity. Each column indicates the total number of SPRs and the number of
duplicate SPRs. Duplicate SPRs are determined during the SPR Review process. Specifically,
these are duplicate SPRs not closed at the time of the review. A high percentage of duplicates
may indicate duplication of effort by individual test engineers in the test group. For reporting
purposes, SPRs awaiting review, postponed during a review, or passed on to the system
development group are shown as one total. The total number of SPRs, by level of severity,
depicted in Figure 5.2 are shown in the lower portion of the columns of Figure5.3 as the Total.
The number of duplicate SPRs is compared to the Total, by degree of severity, and shown in the
upper portion of Figure 5.3.

6

0%

20%

40%

60%

80%

100%

Total and Duplicate SPR

Duplicate 2 6 15
Total 23 55 76

High Medium Low

Figure 5.3 Total Versus Duplicate System Problem Reports

Duration Between States of System Problem Report Life Cycle

The time between states, as SPRs progresses through key milestones in the life cycle, is an
important indicator of the effectiveness of the SI&T process. In normal progression, SPRs move
from submitted through assigned, opened, resolved, and then closed. A significant time lapse
between submitted and assigned may indicate an ineffective SPR Review process. A significant
time lapse in moving an SPR from assigned to opened, or from opened to resolved, may indicate
workflow problems within the software development group. The time lapse in transitioning from
resolved to closed might indicate workflow problems in test group efforts.

SPR milestones include assigned, resolved, and closed. These milestones indicate responsibility
for action passing between the test group and the system development group. A sample chart
depicting SPR progression is provided in Figure 5.4.

7

Time in progression

0

5

10

15

20

C
al

en
da

r D
ay

s

High 11 6 6
Medium 11 15 8
Low 11 13 7

1 2 3

1 Number of Days from Submitted to Assigned
2 Number of Days from Assigned to Resolved
3 Number of Days from Resolved to Closed

Figure 5.4 System Problem Reports Progression Times

Figure5.4 contains three sections, each with three columns. Sections are identified in the legend
at the bottom of the chart. Section 1 shows the average number of calendar days before an SPR
is reviewed. This is an indicator of the efficiency of the SPR Review process. Section 2 shows
the average number of days the SD group requires to repair problems. The SD group is
responsible for the repair once the SPR is assigned through the SPR Review process. After the
problem is repaired, the Test group schedules the re-test. Re-tests are conducted after the SD
group declares the SPR resolved. Section 3 shows the average number of days it takes the Test
group to conclude the re-test or re-open the SPR, if the re-test fails.

The columns in each section depict levels of severity; High, Medium, and Low.

Only SPRs that follow a normal progression are included in a report, such as depicted in
Figure5.4. SPRs that should not have been submitted and do not follow normal progression are
the topic of sub-section, 5.2.2.

Abnormal Progression
SPRs closed from any state other than resolved is an indication of an ineffective SI&T process.
Moving a SPR from submitted to closed, after the SPR review indicates a lack of test engineer
training. Moving from assigned to duplicate or from assigned to closed indicates a problem in

8

the SPR Review process. Abnormal progression is reported to assist in identifying problem
areas and improving the process.

The chart in Figure 5.5 is an example of a chart depicting SPRs closed without being resolved

Abnormal Progression

0

5

10

15

SP
R

s

High 11 6 6 3

Medium 9 4 8 5

Low 11 13 7 6

1 2 3 4

1 Closed from Submitted or Postponed.
2 Closed from Assigned.
3 Closed from Resolved.
4 Closed from Opened.

Figure 5.5 System Problem Report Abnormal Progression

The chart in Figure 5.5 contains four sections, each with three columns. Sections are identified
in the legend at the bottom of the chart. Section1 depicts the number of SPRs detected as
incorrect during the SPR Review process. A significant number in Section 1 may indicate a lack
of test engineer training specific to the software application being tested. Sections 2, 3, and 4
depict the number of SPRs not detected as erroneous during the initial SPR Review process.
Significant numbers in these sections may indicate a problem with user documentation, system
documentation test case development, the SPR Review process, or any combination of the three
areas.

9

This page intentionally left blank

10

GLOSSARY

Aggregate
A mass of distinct things gathered into a total or whole.

Aggregation Level
Effective measurement analysis and reporting requires that the data be aggregated to higher
levels of the of the software components and project organizational structure. The aggregation
levels define the different ways the measurement data can be grouped and organized for
reporting on the project. The aggregation levels describe how the measurement data relates to an
existing product and process structures. The organization that allows the measurement results to
be combined, and later decomposed, into meaningful pieces of information.

Aggregation Structure
The structure used to define the data according to the defined aggregation levels. The levels may
describe the personnel and management structure of the project, or the configuration of physical
components of the project. All entries in a structure should be of the same type, such as software
modules. However, these entries may reside at various levels of the structure, such as software
modules at the unit level, CSCI, or integrated level of the software architecture.

Application
(1) A complete, self-contained program that performs specific function(s) directly for the user.

(2) In the TPM process this term refers to one of the two basic measurement activities which
comprise the system measurement process. The application activity involves collecting,
analyzing, and acting upon the measurement data.
See Tailoring

Automated Test Script
A computer readable set of instructions that performs a sequence of steps, sub-steps, or other
actions, performed serially, in parallel, or in some combination of consecution, that creates the
desired test conditions that the test case is deigned to evaluate.

Baseline
A specification or product that has been formally reviewed and agreed upon, that thereafter
serves as the basis for further development, and that can be changed only through formal change
control procedures.

Gls-1

Baseline Control

Baseline control is the process that regulates approved and released versions of all software,
documentation, and the test environment throughout the test life cycle.

Black Box Testing
This is testing associated with functional testing where the object being tested is treated as a
black box. In this type of testing the test object is subjected to inputs and outputs that are
verified for conformance to prescribed specifications.

Capacity Testing
Attempts to simulate expected customer peak load operations in order to ensure that the system
performance requirements are met. It does not necessarily exercise all of the functional areas of
the system, but selects a subset that is easy to replicate in volume. It will ensure that functions
which are expected to use the most system resources are adequately represented.

Change Control
The process by which problems and changes to the software, documentation, and test
environment are evaluated, approved, rejected, scheduled, and tracked.

Computer Aided Software Engineering (CASE)
A technique for using computers to help with one or more phases of the software life cycle,
including the systematic analysis, design, implementation and maintenance of software.
Adopting the CASE approach to building and maintaining systems involves software tools and
training for the developers who will use them.

Computer Software Configuration Item (CSCI)
An aggregation of software that is designated for configuration management and treated as a
single entity in the configuration management process.

Configuration Control
An element of configuration management, consisting of the evaluation, coordination, approval or
disapproval, and implementation of changes to configuration items after formal establishment of
their configuration identification.

Configuration Item (CI)
Hardware or software, or an aggregate of both, which is designated by the project configuration
manager (or contracting agency) for configuration management.

Gls-2

Configuration Management (CM)
A discipline applying technical and administrative direction and surveillance to: identify and
document the functional and physical characteristics of a configuration item, control changes to
those characteristics, record and report change processing and implementation status, and verify
compliance with specified requirements.

Configuration Management Office (CMO)
The Configuration Management Office (CMO) is the officiator of the project life cycle CM
process.

Criteria
A standard, rules, or tests by which something can be judged.

Critical Defect

See Criticality

Criticality
The assessment of the impact upon a system of a given error, defect, problem, or discrepancy
during the life cycle of a system.

The definition of critical and non-critical system defects or problems should be addressed at a
management level and can be different for each system. For any given system error, defect,
problem, or discrepancy, an appropriate impact value (i.e., priority) will be assigned.

An example of impact values with the corresponding priority numbers is presented below as
contained in IEEE/EIA Std-12207, 1998. The priority that will apply if a problem can result in
one or more of these impacts:

PRIORITY IMPACT

(3) a.) Prevent the accomplishment of an operational or mission essential capability.

b.) Jeopardize safety.

c.) Cause significant technical, cost, or schedule risks to the project or to life
cycle support of the system.

(4) a.) Adversely affect the accomplishment of an operational or mission essential capability
and no work-around solution is known.

b.) Adversely affect technical, cost, or schedule risks to the project or to life cycle
support of the system, and no work-around is known.

Gls-3

(5) a.) Adversely affect the accomplishment of an operational or mission essential capability,
but a work-around solution is known.

b.) Adversely affect technical, cost, or schedule risks to the project or to life cycle
support of the system, but a work-around is known.

(6) a.) Results in user/operator inconvenience or annoyance, but does not affect a required
operational or mission essential capability.

b.) Results in inconvenience or annoyance for development or support personnel,
but does not prevent the accomplishment of the responsibilities of these
personnel.

(7) a.) This priority denotes any other effect.

Customer

The organization that procures software systems for itself or another organization.

Developer
An organization that develops software products. The term “develop” may include develop,
modification, integration, reengineering, sustaining engineering, maintenance, or any other
activity that results in software products. The developer may be a contractor or a government
agency.

Discrepancy
An inconsistency or disagreement found during testing between the actual and expected test
results.

Document

A data medium and the data recorded on it that generally has permanence and can be read by a
human operator or machine. Often used to describe human readable items only (e.g., technical
documents, design documents, requirements documents, etc.).

Documentation
(8) A collection of documents on a given subject.

(9) The management of documents, that includes the actions of identifying, acquiring,
processing, storing, and disseminating.

(10) Any written or pictorial information describing, defining, specifying, reporting or certifying
activities, requirements, procedures, or results.

Gls-4

Driver

A software program that exercises a system or system component by simulating the activity of a
higher level component.

Emulation
One system is said to emulate another when it performs in exactly the same way, though perhaps
not at the same speed. A typical example would be the emulation of one computer by (a
program running on) another. You might use emulation, as a replacement for a system whereas
you would use a simulation if you just wanted to analyze it and make predications about it.

Emulator
Hardware or software that performs emulation.

Entry Criteria
A set of decision making guidelines used to determine whether a system under test is ready to
move into, or enter, a particular phase of testing. Entry criteria tend to become more rigorous as
the test phases progress.

Environment

The infrastructure in which a system is executing, consisting of hardware, operating system
software, interfaces, etc.

Exit criteria
A set of decision-making guidelines used to determine whether a system under test is ready to
exit a particular phase of testing. When exit criteria are met, either the system under test moves
on to the next test phase or the test project is considered complete. Exit criteria tend to become
more rigorous as the test phases progress.

Final System Test Report (FSTR)
Used to determine whether system testing is completed and to assure that software is ready for
production.

Hardware Configuration Item (HWCI)
An aggregation of hardware that is designated for configuration management and treated as a
single entity in the configuration management process.

Gls-5

Independent Verification and Validation (IV&V)

The verification and validation of a software product by an organization that is both technically
and managerially separate from the organization responsible for developing the product.

Indicator
A measure or combination of measures that provides insight into a system issue or concept.
TPM frequently uses indicators that are comparisons, such as planned versus actual measures.
Indicators are generally presented as graphs or tables.

Integration
Combining software or hardware components or both into an overall system.

Integration Testing
The period of time in the software lifecycle during which the application is tested in a simulated
production environment to validate the communications and technical architecture of the system.
This test phase occurs when all the constituent components of the system under test are being
integrated.

Interactive Development Environment (IDE)

A system for supporting the process of writing software. Such a system may include a syntax-
directed editor, graphical tools for program entry, and integrated support for compiling and
running the program and relating compilation errors back to the source code.

Interface
(11) A shared boundary (e.g., a hardware component linking two devices or registers, or a

portion of storage accessed and/or modified by two or more computer programs).

(12) To interact or communicate with another system component.

Interface Requirement
A requirement that specifies a hardware, software, or database element with which a system or
system component must interface, or that sets forth constraints caused by such an interface.

Interface Specification
A specification that sets forth the interface requirements for a system or system component (e.g.,
the software interface specification document).

Gls-6

Interface Testing

Tests conducted to ensure that program or system components correctly pass data and/or control
to one another.

Issue
An area of concern where obstacles to achieving program objectives might arise. Issues include
risks, problems, and lack of information. These three types of issues are defined as:

(13) Risk -- An area of concern that could occur, but is not certain. A risk is a potential
problem. Risks represent the potential for the realization of unwanted, negative
consequences from a project event. For example, a project plan may be based on the
assumption that a COTS component will be available on a given date. There is a possibility
(probability) that the COTS may be delayed and have some amount of negative impact on the
project.

(14) Problem -- An area of concern that a project is currently experiencing or is relatively
certain to experience. For example, a shortage of staff with the right skills may be an actual
problem that is delaying the project.

(15) Lack of Information -- An area where the available information is inadequate to reliably
predict project impact. Thus, satisfaction of project objectives is questionable even if no
problems or risks are present. For example, lack of information about the size of the
software to be developed could result in the project “discovering” that it has more work to do
than originally planned.

Measure

The result of counting or otherwise quantifying characteristics of a process or product. Measures
are numerical values assigned to system attributes according to defined criteria.

Measured (or actual) Value

Actual, current measurement data, such as hours of effort expended or line of code produced.

Measurement
The process of assigning quantitative values of system properties, according to some defined
criteria. This process can be based on estimation or direct measurement. Estimation defines
planned or expected measures. Direct measurement results in actual measures.

Measurement Analysis
The uses of measurement data to identify problems, assess problem impact, project an outcome,
or evaluate alternatives related to system issues.

Gls-7

Measurement Analyst

The person(s) or team responsible for tailoring and applying system measures for a given project
or task.

Measurement Information
Knowledge derived from analysis of measurement data and measurement indicators.

Milestone
A scheduled event for which some project or task member or manager is held accountable. A
milestone is often used to measure progress.

Module

A program unit that is discrete and identifiable with respect to compiling, combining with other
units, and loading.

Note: The terms ‘module’, ‘component’, and ‘unit’ are often used interchangeably or defined to
be sub-elements of one another in different ways depending on the context.

Non-Critical Defect
See Criticality

Performance Testing
The period of time in the system or software development lifecycle during which the response
times for the application are validated to be acceptable. The tests ensure that the system
environment will support production volumes, both batch and on-line.

Priority
A measure of the elements of importance related to the repair of a system problem that are not
considered in defining the severity of a system problem.

Project Manager (PM)
The official responsible for acquiring, developing, or supporting a system to meet technical, cost,
schedule, and quality requirements. Acquisition, development, and support will include both
internal tasks and work that is contracted to another source.

Gls-8

Quality Assurance (QA)

A planned and systematic pattern of all actions necessary to provide adequate confidence that the
product optimally fulfils customers expectations.

Quality Control (QC)
The assessment of product compliance. Independently finding deficiencies assures compliance
of the product with stated requirements.

Requirement
(16) A condition or capability needed to solve a problem or achieve an objective.

(17) A condition or capability that must be met or possessed by a system or system component
to satisfy a contract, standard, specification, or other formally imposed document. The set of
all requirements forms the basis of development.

Regression testing
Part of the test phase of software development where, as new modules are integrated into the
system and the added functionality is tested, previously tested functionality is re-tested to assure
that no new module has corrupted the system.

Risk
An area of concern that may occur, but is not certain. A risk is a potential problem. Risks
represent the potential for the realization of unwanted, negative consequences from a project
event. For example, a project plan may be based on the assumption that a commercial off the
shelf (COTS) component will be available on a given date. There is a possibility (probability)
that the COTS may be delayed and have some amount of negative impact on the project.

Severity
The degree to which a problem adversely influences the system’s operation or the overall test
effort.

Simulation
Attempting to predict aspects of the behavior of a system by creating an approximate
(mathematical) model of it. This can be done by physical modeling, by writing a special-purpose
computer program or using a more general simulation package, aimed at a particular kind of
simulation. Typical examples are aircraft simulators or electronic circuit simulators.

Gls-9

Simulator

Hardware or software that performs simulation.

Software Design Specification (SDS)
A document that records the design of a system or system component; typical contents include:
system and/or component algorithms, control logic, data structures, data set use, input/output
formats, and interface descriptions.

Software Development File (SDF)

The developer shall document the development of each Computer Software Unit (CSU),
Computer Software Component (CSC), and CSCI in Software Development Files (SDF).
The developer shall establish a separate SDF for each CSU or a logically related group of
CSUs, for each CSC or a logically related group of CSCs, and for each CSCI. The
developer shall document and implement procedures to establish and maintain SDFs.
SDFs may be generated, maintained, and controlled by automated means. To reduce
duplication, SDFs should not contain information provided in other documents or SDFs.
The set of SDFs shall include (directly or by reference) the following information:
(18) Design considerations and constraints.

(19) Design documentation and data.

(20) Scheduling and status information.

(21) Test requirements and responsibilities.

(22) Test case, test case procedures, and results.

Software Life Cycle
The phases a software product goes through between when it is conceived and when it is no
longer available for use. The software life cycle typically includes the following: requirements,
analysis, design, construction, testing (validation), installation, operation, maintenance, and
retirement. The development process tends to run iteratively through these phases rather than
linearly; several models (spirals, waterfall, etc.) have been proposed to describe this process.
Other processes associated with a software product are: quality assurance, marketing, sales, and
support.

Software Management Plan
A project plan for the development of the software component of a system or for the
development of a software product.

Gls-10

Software Requirements Document (SRD)

This is a formal document derived from the Software Requirements Specification (SRS) that sets
forth the requirements, specifications, and standards for a system (e.g., a software product).
Typically included are functional specifications and requirements, performance specifications
and requirements, interface specifications and requirements, design specifications and
requirements, and development requirements and standards.

Software Requirements Specification (SRS)
A specification that sets forth the requirements for a system component; (e.g., a software
product). Typically included are functional requirements, performance requirements, interface
requirements, design requirements, and development standards.

Software Tool

Computer programs used to help develop, test, analyze, or maintain another computer program
or its documentation.

Specification
Documentation containing a precise, detailed, verifiable description of particulars with respect to
the requirements, design, function, behavior, construction, or other characteristics of a system or
system component.

Stub
(23) A dummy procedure used when linking a program with a run-time library. The stub routine

need not contain any code and is only present to prevent “undefined label” errors at link time.

(24) A local procedure in a remote procedure call (RPC). The client calls the stub to perform
some task and need not necessarily be aware that RPC is involved. The stub transmits
parameters over the network to the server and returns the results to the client/caller.

System

• Any large program.

• The entire computer system, including the input/output devices, supervisor program
or operating system and possibly other software.

System Problem Report (SPR)
A form that is used to record a discrepancy discovered during the Integration Test, Performance
Test and System Qualification Test phases of the SI&T process concerning a Computer Software
Configuration Item, a software system or subsystem, other software related items, and associated
documentation.

Gls-11

System Problem Report (SPR) Status Report
The System Problem Report Status Report is used during the SPR Status Review to determine if
the SPRs are being processed appropriately and expeditiously.

System Testing
The period of time in the software lifecycle during which the implementation of each
requirement is validated.

Tailoring
In the TPM process, this term refers to one of the two basic measurement activities, which
comprise the system measurement process. The tailoring activity includes identification and
prioritization of program issues, selection and specification of appropriate system measures, and
integration of the measurement requirements to the developer’s system process.
See Application.

Test
The process of exercising a product to identify differences between expected and actual
behavior.

Test Artifacts
An item created during the system integration and test process that is preserved upon completion
of the test process (e.g., test plans, requirements documentation, automated test scripts, and test
documentation).

Test Case
A description of a test to be executed for or focused on a specific test aim.

Test Case Procedures
A sequence of steps, sub-steps, and other actions, performed serially, in parallel, or in some
combination of consecution, that creates the desired test conditions that the test case is designed
to evaluate.

Test Case (Setup) Suite
The steps required to configure the test environment for execution of a test case.

Gls-12

Testing Condition

System state or circumstance created by proceeding through some combination of steps, sub-
steps, or actions in a test case.

Testing Environment
The infrastructure in which the test is performed, consisting of hardware, system software, test
tools, and procedures.

Test Plan
In a test plan the general structure and the strategic choices with respect to the test to be executed
are formulated. The test plan forms the scope of reference during execution of the test and also
serves as an instrument to communicate with the customer of the test. The test plan is a
description of the test project, including a description of the activities and planning, therefore it
is not a description of the tests themselves.

Test Readiness Review (TRR)
Review conducted to determine whether a software test phase has been completed and to assure
that the software is prepared for the next step in the formal integration and testing procedures.
Software test procedures and results are evaluated, for compliance with the software testing
requirements and system descriptions, for adequacy in accomplishing testing goals. Also,
provides the forum for updating and revising operational and supporting documentation.

Test Resources
Aids that are used by a test tool for collecting, tracking and controlling information. This
information is:

(25) Software requirements defined in the Software Requirements Document.

(26) Test requirements defined in the System Test Description.

(27) Automated test case scripts as defined in the System Test Description.

(28) SPRs as determined at each phase of the System Integration and Testing process.

This information is controlled by Configuration Management at the end of the SI&T process for
use whenever further testing may be conducted, using a testing tool, during the remaining
lifecycle of the software or system.

Test Tools
The software, hardware, systems, or other instruments that are used to measure and test an item.

Gls-13

Traceability

Degree to which a relationship can be established between two or more products of the
development process, especially products having a predecessor, successor, or master-subordinate
relationship to one another (e.g., the degree to which the requirements and design of a given
software component match).

Unit
The lowest element of a software hierarchy that contains one or more of the following
characteristics:

(29) A unit comprising one or more logical functional entities.

(30) An element specified in the design of a computer software component that is separately
testable.

(31) The lowest level to which software requirements can be traced.

(32) The design and coding of any unit can be accomplished by a single individual within the
assigned schedule.

Unit Test
The process of ensuring that the unit executes as intended. This usually involves testing all
statements and branch possibilities.

Version

One of a sequence of copies of a system, each incorporates new modifications.

Version Identifier
A unique identifier assigned to baseline software, documentation, and test environment.

Version Control
The process by which all changes to the software, documentation, and test environment are
compiled and built into a new version of the system.

Version Control Report
A report that details all changes and enhancements made to current version of the software,
documentation, and test environment.

Gls-14

White Box Testing

This type of testing is associated with structural testing in which the testing can be characterized
as being tied to implementation details, such as control methods, database design, coding details,
and logic paths. The process of how an individual input is treated to produce a given output is
ascertained. Structural testing is sometimes referred to as “clear box testing” since white boxes
are considered opaque and do not really permit visibility into the code.

Work Breakdown Structure (WBS)
A work breakdown structure for software defines the software-related elements associated with
program work, work activities, and products. Many measures are aggregated and analyzed at
various WBS levels.

Gls-15

This page left intentionally left blank

Gls-16

BIBLIOGRAPHY

Black, Rex. Managing The Testing Process, Redman, WA: Microsoft Press, 1999

Koomen, Tim and Pol, Martin. Test Process Improvement, Essex, England, UK: Pearson
Education Limited, 1999

Carnegie Mellon University, Software Engineering Institute. The Capability Maturity Model:
Guidelines for Improving the Software Process, 1995.

Institute of Electrical and Electronics Engineers (IEEE). “Glossary of Software Engineering
Terminology”, IEEE-Std-610.12, 1990.

Institute of Electrical and Electronics Engineers (IEEE)/Electronic Industries Alliance (EIA).
“Software Life Cycle Processes”, IEEE/EIA Std-12207, 1998.

U.S. Department of Education. “SFA System Integration & Testing Approach, SFA
Modernization”, Undated.

U.S. Department of Education. “SFA Enterprise Configuration Management Approach, SFA
Modernization”, Undated.

Federal Systems Integration and Management Center (FEDSIM). “FEDSIM Writers Guide,
Version 2”, May 1994

Practical Software Measurement: A Foundation for Objective Project Management, Version 3.1,
17 April 1998, Office of the Under Secretary of Defense for Acquisition and Technology, Joint
Logistics Commanders Joint Group on Systems Engineering

Free On-Line Dictionary Of Computing web site at www.foldoc.org

Bbl-1

This page intentionally left blank

Bbl-2

APPENDIX A

MEASUREMENT TAILORING PLAN

A-1

This page left intentionally left blank

A-2

A1. Measurement Tailoring Example

This appendix describes the TPM tailoring process as it is applied to a project. An example of a
fictional project scenario is provided to demonstrate use of the TPM process to select a set of
software measures.

A1.1 Project Scenario
During the project-planning phase of a large, real-time sensor system software upgrade, the
project office learned that the updated system would be deployed earlier than originally planned.
The planning efforts completed to date had identified some significant constraints with respect to
schedule, and this change increased the schedule risk. The PM decided to implement a
measurement process to help guide the project through these challenges.

First, the key characteristics of the project were identified and documented. This information is
summarized as follows:

• Large, real-time sensor system

• Existing system baseline

• Approximately 1.5 Million lines of source code to be implemented

• Multiple software languages (Ada, C+, and Assembly)

• Multiple developers working under a prime contractor responsible for system

integration

• Average software development process maturity across all organizations

• Funding limits

Due to the schedule risk and the large amount of functionality to be implemented in a short time,
the project office required that the developer use COTS software components. The developer
was instructed to reuse a considerable amount of legacy software, adopt an open-systems
architecture, and apply commercial software development process standards.

A-3

A1.1.1 Identify And Prioritize Project Issues

Following TPM selection and specification approach, a planning workshop was held to identify
and prioritize project-specific software issues and then select appropriate measures for those
issues. This workshop was a facilitated session with representatives from the project
management team, the developer, and subcontractors. After the workshop, a subset of
participants was designated to form an IPT to develop and implement a measurement plan based
on the workshop results.

During the workshop, participants developed a list of issues affecting the project. The issues
included risks identified through the formal risk management process, the project objectives and
constraints specified in the contract, and issues identified based on experience from previous
projects. This activity produced a list of areas of concern for the project. These issues are
consolidated into a set of prioritized, project-specific issues with related sub-issues as outlined in
Table A.1.

Issue/Sub-Issue Priority
Are schedule milestones met? 1
 •

•
Is integration and test progress adequate to meet the delivery date?
Do incremental builds contain the specified functionality?

Is the productivity rate sufficient to meet plans? 2
 •

•
Were size estimates used for cost and schedule plans correct?
Will the planned COTS/reuse meet allocated requirements or will
new code be required?

Are there sufficient resources to complete the development? 3
Are requirement changes impacting the development? 4
Does the project meet quality requirements, as measured by the number of
SPRs?

5

Table A.1 Issues and Priorities

The primary risk to the project is the short development schedule. The project had originally
been “sold” on new capabilities and the use of advanced technologies. Using advanced
technologies increased the overall technical risk of the software development. The need to
deliver the system earlier than expected increased the concern.

A-4

A1.1.2 Select and Specify Project Measures

The issues were mapped to TPM common issues, as shown in Table A.2. TPM tables were
reviewed to help determine the best measurement categories and associated measures to use to
provide the required information. This selection also considered the availability of measures
from the software development process. Figure A.2 lists the measures that resulted from the
selection activity.

Project
Specific
Issue

TPM Common
Issue

Categories Measures

Schedule Schedule and
Progress

Milestone
Performance

Work Unit Progress

Incremental Capability

Milestone Dates

Component Status (SU,
Integration, Performance,
and SQT)
Requirement Status

Version Content-Function

Productivity Development
Performance

Growth and
Stability

Technical
Adequacy

Productivity

Product Size and
Stability

Technology Impacts

Product Size/Effort Ratio

Lines of Code

Size by Origin

Resources Resources and
Cost

Personnel Effort

Requirements Growth and
Stability

Functional Size and
Stability

Requirements

Quality Product Quality Defects SPRs

Table A.2 Measure Mapping

For purposes of this example, only the selection of the “Schedule and Progress” measures is
discussed below. The categories of Milestone Performance, Work Unit Progress, and
Incremental Capability were selected to address schedule. The Milestone Performance category
was selected because this provided a high-level overview of schedule progress, and because
Gantt charts were already being used to manage the project.

Work Unit Progress measures were selected to track development activities due to the amount of
COTS and reused code to be implemented. The focus was on the selection of requirements-

A-5

oriented measures and measures that provide progress information for integration and test, rather
than for design and implementation.

The build content measure was selected because the team determined that it was important to
ensure that each of the incremental builds incorporated all planned functionality.

The team needed to be aware of any functionality deferment early, to minimize schedule impacts
and evaluate productivity.

The previous paragraphs describe how the measures for “Schedule and Progress” were selected.
A similar method was used to select the measures in each category.

A1.1.3 Integrate Into The Software Process

At the completion of the measurement selection activity, the IPT has defined a prospective list of
measures, along with perspective data items, attributes, and aggregation structures. The next
activity is for the developer to define a detailed measurement specification for each selected
measure. The results are documented in the Project Management Plan. The detailed
specification for the lines of code measure is provided in Table A.3.

A-6

Measure Lines of Code (LOC)

Data Items Number of LOC
Number of LOC Added
Number of LOC Modified
Number of LOC Deleted

Attributes Data Type (plan, actual)
Data Collection Date
Data Reporting Date
Organization
Source (new, reused)
Language (Ada, C+, Assembly)
Version Number

Structure Component by CSCI
Definition LOC will be counted as logical lines of code. No blank lines or

comments will be included.

Collection
Level

SU

Actual Count
Is Based On

A CSCI is counted as complete when it passes CSCI qualification test.
This means that code is complete and turned over to CM, the SU Test
phase testing is complete, and code inspection and all outstanding
action items from the inspection are complete.

Applied
During

Estimates are calculated during software requirement analysis and
design. Actual data is available during implementation. Actual
updated data is re-measured during system integration and test, if a
CSCI is modified to integrate a fix.

Data Reporting
Process

SU-level data is available from the CM system used on the project.
The government may access this system at any time to do detailed
analysis. The government is provided a CSCI-level report of this data
once a month via electronic format.

Frequency Monthly

Table A.3 Specification For Lines of Code

All decisions made in this tailoring example were documented in the TMP including:

e. The list of project-specific issues, along with associated details describing each issue.

f. TPM common software issue and category to which each project-specific measure maps.

g. The measures selected to address the issues and the rationale for selecting each.

h. The measurement specification for each selected measure.

A-7

i. List of interfaces.

The measurement plan was implemented on this project. Data was collected and analyzed
monthly. The PM used the analysis results.

A-8

	Master Table of Contents
	INTRODUCTION
	Background
	Objective
	Applicability
	Document Organization

	PROPOSED SYSTEM TEST ORGANIZATION OVERVIEW
	Executive Manager
	Project Manager
	Quality Assurance Group
	Configuration Management Group
	System Development Group
	Test Manager
	Test Engineer

	TEST PERFORMANCE MEASUREMENTS OVERVIEW
	Measurement Implementation Roles
	Communication

	TAILORING TEST PERFORMANCE MEASUREMENTS
	Test Performance Measurements Tailoring Overview
	Identify and Prioritize Project Issues
	Issues
	Risk Management

	Select and Specify Project Measures
	Select Measurement Categories
	Select The Applicable Measures
	Specify The Data Requirements
	Selecting and Specifying Measures For Existing Projects

	Integrate Measures Into The Software Development Process
	Characterize Software Environment
	Identify Measurement Opportunities
	Specify Measurement Implementation Requirements

	Project Measurement Plan
	Organizational Measurement Plan

	EFFECTIVE USE OF MEASUREMENT DATA
	Tracking Test Effort Effectiveness
	Traceability
	Measuring Test Effort Relative To Software and Testing Requirements
	Measuring the Effectiveness of SPR Identification and Resolution

	System Problem Reports By State of System Problem Report Life Cycle
	Duration Between States of System Problem Report Life Cycle
	Abnormal Progression

	GLOSSARY
	BIBLIOGRAPHY
	APPENDIX A��MEASUREMENT TAILORING PLAN

